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PREFACE

This report is published to provide coastal engineers the results of a
series of prototype-scale tests of a floating breakwater that incorporates
massive cylindrical members (steel or concrete pipes, telephone poles, etc.)
in a matrix of scrap truck or automobile tires. The breakwater, which was
developed by the senior author while serving on the faculty of the State
University of New York at Buffalo (SUNY), is referred to as the Pipe-Tire
Breakwater (PT-Breakwater). Tests were conducted in the large wave tank at -
the U.S. Army Coastal Engineering Research Center (CERC) in a joint effort by - 4
CERC and SUNY personnel. The work was carried out under CERC's Design of
Floating Breakwaters work unit, Coastal Structure Evaluation and Design
Program, Coastal Engineering Area of Civil Works Research and Development.

The report was prepared by Dr. Volker W. Harms, SUNY and University of
California, Berkeley; Joannes J. Westerink, SUNY; Dr. Robert M. Sorensen, IS
Chief, Coastal Processes and Structures Branch, CERC; and James E. McTamany,
Coastal Oceanography Branch, CERC. '

The authors gratefuly acknowledge the assistance of SUNY technical spe- -
cialist J. Sarvey and students T. Bender, P. Hughey, and P. Speranza, and r
the difficult crane operations and frequent wave generator stroke changes "9
performed by CERC's research support personnel. o

This research was sponsored in part by the New York Sea Grant Institute o\
under a grant from the Office of Sea Grant, National Oceanic and Atmospheric -
Administration (NOAA), U.S. Department of Commerce, through SUNY. It was also 3
supported by the U.S. Department of Energy under Contract W-7405-ENG-48 to the 4
Marine Sciences Group, Lawrence Berkeley Laboratory, University of California.

Technical Director of CERC was Dr. Robert W. Whalin, P.E., upon publica- =
tion of this report.

Comments on this publication are invited.

- Approved for publication in accordance with Public Law 166, 79th Congress,
o approved 31 July 1945, as supplemented by Public Law 172, 88th Congress,
S approved 7 Noveaber 1963.
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E. BISHOP
Colonel, Corps of Engineers
Commander and Director
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CONVERSION FACTORS, U.S. CUSTOMARY TO METRIC (SI) UNITS OF MEASUREMENT

CIE B A Y

U.S. customary units of measurement used in this report can be converted to

metric (SI) units as follows: :;
Multiply by To obtain TE
inches 25.4 millimeters f@
2.54 centimeters =
square inches 6.452 square centimeters e
cubic inches 16.39 cubic centimeters
feet 30.48 centimeters
0.3048 meters
square feet 0.0929 square meters
cubic feet 0.0283 cubic meters
yards 0.9144 meters
square yards 0.836 square meters
cubic yards 0.7646 cubic meters
miles 1.6093 kilometers
square miles 259.0 hectares
knots 1.852 kilometers per hour
acres 0.4047 hectares
foot-pounds 1.3558 newton meters
millibars 1.0197 x 1073 kilograms per square centimeter
ounces 28.35 grams
pounds 453.6 grams
0.4536 kilograms
ton, long 1.0160 metric tons
ton, short 0.9072 metric tons
degrees (angle) 0.01745 radians
Fahrenheit degrees 5/9 Celsius degrees or Kelvins!

10 obtain Celsius (C) temperature readings from Fahrenheit (F) readings,
use formula: C = (5/9) (F -32).
To obtain Kelvin (K) readings, use formula: K = (5/9) (F -32) + 273.1S. 1
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SYMBOLS AND DEFINITIONS
B width or beam of breakwater (dimension in direction of wave motion)
B/D breakwater aspect ratio
C. wave height transmission ratio, C, = H /H
D tire diameter
D/d relative draft

d water depth

F peak mooring force on seaward mooring line (per unit length of
breakwater)
G center-to-center distance between pipes of PT-Breakwater

g gravitational acceleration

H incident wave height

H/L wave steepness

H, transmitted wave height

L wavelength

L/B relative wavelength

T wave period

Y specific weight of water

€ horizontal displacement of breakwater from equilibrium position

A length of breakwater (dimension at right angles to direction of wave
motion)

v kinematic viscosity of water
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WAVE TRANSMISSION AND MOORING-FORCE CHARACTERISTICS
OF PIPE-TIRE FLOATING BREAKWATERS

by
Volker W. Harms, Joannes J. Westerink,
Robert M. Sorensen, and James E. McTamany

I. INTRODUCTION

This report presents methods for constructing a recently developed float-
ing breakwater that consists largely of scrap pneumatic-tire casings, and
also provides basic data for the design of such structures. The idea of con-
structing floating breakwaters almost entirely from scrap tires was originally
conceived two decades ago by R.L. Stitt and resulted in a patent for the wave-
maze floating tire breakwaters (Stitt, 1963; Kamel and Davidson, 1968). More
recently, this councept was adapted in the development of the Goodyear floating
tire breakwater (Kowalski, 1974; Candle, 1976). Both these breakwaters
are flexible in all directions since there are no rigid structural members
utilized. The Goodyear module differs from the Wave-Maze in the size of the
tires used (automobile as opposed to truck tires), geometric arrangement o<
the tires (single-layer upright versus triple-layer “sandwich”), and binding
materials and techniques used (typically conveyor-belt loops as opposed tb
bolted-tire connections). A number of floating breakwaters of both types have
been installed on the Great Lakes, the east and west coasts of the United
States, and overseas, with various levels of success.

Although the insr-llation of floating breakwaters 1is frequently favored
over bottom-resting structures for a number of environmentally related reasons
(e.g., impact on water circulation, fish migrations), the principal reason for
considering floating breakwaters made of tires is their relatively low cost.
For small marinas of less than 100 boat slips, floating breakwaters are fre-
quently the only wave protection system that is economically feasible with
costs ranging from $10 to $100 per horizontal square meter of breakwater. At
the same time, it must be recognized that floating tire breakwaters provide
less wave protection, are less rugged, and have lower extreme event survival
capabilities than conventional bottom-resting structures, such as rubble-mound
and sheet-pile breakwaters. A comparison of knowledge acquired from field
installations and prototype-scale laboratory tests suggests that the Goodyear
and Wave-Maze floating tire breakwaters should be limited to semiprotected
sites, or short fetch applications (e.g., 10 kilometers or less), with signif-
icant wave heights below 0.9 to 1.2 meters. At locations with severer wave
climates (larger wave height and period), several limitations have been
encountered with regards to:

(a) Structural Integrity. The response behavior of wave-induced
mooring loads increases approximately with the square of the wave
height. While under severe wave action the following problems have
been encountered: (1) modules connected to the seaward mooring lines
separate because of excessive loads, (2) anchors fail or “walk"
because of the large mooring forces, (3) flotation materis” is lost
from individual tires because of the excessive stretching and twist-
ing, and (4) tire connection and binding materials reach their fail-
ure limit,
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(b) Breakwater Size. As with all breakwaters, the size of a
floating tire breakwater 1is site specific, The dimension of the
breakwater in the direction of wave propagation (width or beam) must
generally be at least as large as the locally predominant wavelength
(design wave). This implies that a very large breakwater will be
required at sites with long period waves, which not only increases
the breakwater's cost but also may not be feasible because of space
limitation.

(c¢) Buoyancy. Portions of the breakwater configuration may begin
to sink if individual tires 1lose their flotation material (e.g.,
caused by stretching and twisting while under high loads) or 1if the
structure gains too much weight with time (caused by deposition of
suspended sediments in the tire casings or excessive marine growth).

In an attempt to improve on the design characteristics of the floating
breakwaters discussed above, another wave protection concept utilizing
pneumatic tire casings as the major comstruction material has recently been
developed by the senior author at the State University of New York at Buffalo
(Harms and Bender, 1978; Harms, 1979a). It 1is referred to as the Pipe-Tire
Breakwater (PT-Breakwater), or Harms Breakwater, and 1is basically a hybrid
structure with massive, rigid, cylindrical members (e.g., steel or concrete
pipes) embedded in a flexible matrix of scrap tires. Experiments performed
with several small-scale PT-Breakwater models (Harms, 1979b) and one full-
scale breakwater demonstrated that this design provides significantly more
wave protection than the Goodyear or Wave-Maze breakwaters constructed of
equal size. These early laboratory tests also suggested that a full-scale
PT-Breakwater would have superior extreme event survival capabilities, while
preliminary calculations indicated that costs would remain low enough for this
wave protection system to be economically attractive.

Because of the PT-Breakwater's potential contribution to low-cost wave
protection, prototype~scale experiments over a wide range of wave conditions
were conducted in a joint test program between the State University of New
York at Buffalo and the U.S. Army Coastal Engineering Research Center (CERC).
Full-scale tests, which are the subject of this report, were conducted in the
large wave tank at CERC. Investigations were aimed at defining the wave
transmission and mooring-force characteristics of PT-Breakwaters; it was also
intended that structural failure modes be analyzed, should it be possible to
induce them within the range of wave conditions that could be generated in the
tank.

Figures 1 and 2 provide a general impression of a floating PT-Breakwater.
This field installation at Mamaroneck, New York, is based on the PT-1 module
discussed in this report; it i1s constructed of truck tires with steel pipes
serving as the structural members and flotation chambers. The orientation of
the pipes with respect to the incident wave train is shown in Figure 3.

11. THE PIPE-TIRE BREAKWATER
The PT-Breakwater 1is basically a mat composed of flexibly intercomnected
scrap tires, floating near the surface, into which massive cylindrical members

are inserted to provide stiffness in the direction of wave motion and to serve
as buoyancy chambers. Major structural features of the PT-Breakwater are
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Figure 1, PT-Breakwater field installation (PT-1
modules; Mamaroneck, New York). R
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Figure 2. Typical PT-Breakwater module with tire-~
armored pipes (Mamaroneck, New York).
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Figure 3. Orientation of PT-Breakwater.

(a) densely spaced tires, (b) tire-armored longitudinal stiffeners (frequently
steel pipes), and (c) flexible connections and binding materials (no steel-to-
rubber connections). The orientation of the pipes with respect o the inci-
dent wave train is shown in the drawing in Figure 3, with major structural
features of the breakwater shown in the module schematic in Figure 4 and the
definition sketch in Figure 5.

1. Breakwater Modules and Components.

Two versions of the PT-Breakwater, designated as the PT-1 and PT-2 mod-
ules, were tested in the large wave tank at CERC (Fig. 6). The PT-1 module,
which is the most massive of the two due to its composition of truck tires and
steel pipes, is shown in the foreground. The PT-2 module is constructed from
car tires and used telephone poles. From the detailed drawing of the PT-1
module (Fig. 4), several important structural features of the breakwater
emerge:

(a) A series of parallel conveyor-belt loops receive all lateral
loads (at right angles to the direction of wave motion), supports all
tires that are not “riding™ on the pipe, and couples one module to
the next.

(b) Wave-induced hydrodynamic loads are ultimately transferred
from tire strings to the tire-armored steel pipe. This takes place
in stages. Wave action displaces tire strings and belt loops in the
direction of the wave motion (along the pipe) causing the pipe tires
to slide along the pipe and become compressed as they transfer their
load to the tire retainer at the end of the pipe (Figs. 4 and 7).

(c) The pipe 1itself effectively floats in a dense matrix of
flexibly connected tires.
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Figure 6. Assembly of PT-1 (foreground) and PT-2 modules.
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The tire retainer used in the PT-1 module is shown in Figures 4 and 7. In
the case of the PT-2 module, the retainer was a tire casing that was held in
place by a 1.9-centimeter threaded steel rod extending through the telephone
pole and casing.

Standard marine steel-pile pipes were utilized as buoyancy chambers and
stiffeners in the PT-1 module; they were 12.2 meters long and 41 centimeters
in diameter, with a wall thickness of 0.71 centimeter. Scrap telephone poles
were used for the PT-2 module; they were 12.2 meters long with a diameter of
33 centimeters at the butt end and 23 centimeters at the tip.

Truck tires ranging in size from 9.00-18 to 10.00-20, with an average
diameter of 102 centimeters were used for PT-1, Car tires with rim sizes
ranging from 32 to 38 centimeters were used for PT-2; the average diameter was
about 65 centimeters.

A three-ply conveyor belt strip, 14 centimeters wide and 1.3 centimeters
thick, was used as the binding material; this had a rated breaking strength of
7900 kilograms. A five~hole bolted connection (Figs. 8 and 9) was used to tie
the belt into continuous loops.

Figure 8. Breakwater and wooring-system components.
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2. Construction Procedures.

The floating tire breakwater is a modular construction concept. The pro-
cedures followed in the actual construction of the PT-1 modules are described
in this section. The procedures used for the PT-2 modules are very similar
and therefore are not covered. When constructing these modules onsite and
at field installations, it should be insured that a crane with sufficient
lifting capacity is provided as the two-pipe PT-1 module weighs approximately
11 metric tons and the PT-2 module weighs about 4 metric tons.

Asgembly of the breakwater 1s begun by arranging the tires according to
the pattern shown in Figure 4 .but leaving out those tires labeled free tires “
(1.e., all tires not connected in some way to a belt). This phase ig depicted
in Figure 10, where the last tire is just being rolled into place, and also in
Figure 11, where the conveyor-belt strips are being prepared by cutting to
length and punching the five-hole bolted pattern with a gasket or leather
punch (also shown in Fig. 6).

Having assembled the tires, the belts are then guided through the tire
casing according to the pattern shown in Figure 4. An illustration of this
procedure is shown in Figures 12 and 13. The belt-to-belt connection is then
completed by overlapping the belt ends and inserting the five bolts required
for each connection (see Fig. 14), A single bolt 1is used to fix each belt
loop to the sidewall of one belt-loop tire (see Figs. 15 and 4); this prevents -
the belt from rotating under wave action. "

IR BSOSO

After all the belt loops- have been bolted together and anchored, the <
remaining free tires are rolled into place. The unit is then ready for inser- -
tion of the pipe. One forklift is used to raise the pipe and position it for
entry into the long tunnel created by the 56 alined tires; a second forklift,
or similar device, pushes and alines the pipe as required. This having been
accomplished, the module appears as shown in Figure 6. The tire retainer
shom in Figure 7 (or the one depicted in Fig. 8) is then installed at each
end of the pipe, and the PT-]1 module is ready to be lifted into the water (see
Fig. 16).
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First step in breakwater assembly--rolling tires into place.

Figure 11. Tires are in position, ready to be tied.
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Figure 12. Guiding conveyor-belt strip through tire casings.

Figure 13. Tensioning belt before completing belt-to-belt connection.
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Figure 15.

Belt is anchored to sidewall of one tire.
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Figure 16. PT-1 module ready for 1lift into wave tank.

3. Breakwater Buoyancy.

a. Pipe Buoyancy Test. A simple buoyancy test was executed by resting
steel I-beams on top of one of the tire-armored pipes of the PT-1 module until
total submergence was attained (i.e., crown of tires just at the water sur-
face, case B in Fig. 17). Starting from the static, no-load equilibrium
position of the breakwater (i.e., crown of pipe at water level and interior
of the tire vented to atmosphere, case A), two steel I-beams, each 10.7 meters
long and weighing 98 kilograms per meter, were placed onto the tire-armored
pipe. These beams provided the loading needed to attain total submergence of
the pipe-tire unit. In each case, equilibrium demands that

F+n(We, + W) + Fg = F) +nF, (1)

P

F = added external load

F = extraneous loads (from mooring system, etc.)

F, = buoyancy force per tire due to entrapped air

F = net buoyant force due to pipe (1lift minus weight)
W,y = weight of tire segment submerged in water

Weq = weight of tire segment in air

n = number of tires on pipe
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Figure 17. Forces on pipe-tire unit.

In this case the pipe is 12.2 meters long (4l-centimeter outside diameter
and 70.2-kilogram-per-meter weight in air), provides a net 1lift of 59.5 kilo-
grams per meter when totally submerged, and supports 49 truck tires. Truck
tires have a specific gravity of approximately 1.2 with a weight of W a ™ 41
kilograms in air for the sizes predominantly used (i.e., 10.00-20 and 9.00-18
truck tires). Submerged in water this weight is reduced to approximately one-
sixth of W.,, or 6.8 kilograms if all air is expelled. Applying these val-
ues to case A (which corresponds to F = F, = 0 and approximately three-fourths
of tire material submerged) and using equation (1), it follows that the extra-
neous load is a small 1lift force of 26 kilograms, (i.e., Fo = ~26 kilograms).
When the external load F is applied (case B), the buoyancy force resulting
from air entrapped in each tire may be calculated from equation (1) to be:

10.7(196) + 49(0 + 6.8) + (-26) = 12.2(59.5) + 49F,
Fq = 34.2 kilograms per tire

On an average, this implies that 34 liters of air is trapped in the crown
of each tire. It is not known at what rate this trapped air would escape
under static conditions; during wave action the tire crown would be alter-
nately vented and replenished with air. In determining the flotation require-
ments for the complete structure, the weight of suspended sediments that may
accumulate in the tire casings as well as the influence of marine growth
should be considered.

b. Equilibrium of Breakwater. The load-carrying capacity of the break-
water must be carefully considered, particularly in areas where the weight of
the breakwater is likely to increase substantially with time due to deposition
of suspended sediments within the c(ire casings, biofouling, etc. In extreme
cases, all the tires may have to be foamed to provide adequate reserve buoy-
ancy, whereas at other sites the 1ift provided by the steel-pipe flotation
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chambers alone is sufficient. Equation (1) may be used to estimate the
reserve buoyancy provided by a clean single-pipe PT-1 module if some terms
are redefined:

F = F = gediment and biofouling load (per tire)

sed

F, = extraneous load (from binding material, tire retainers, pipe end
caps, shackles, etc.)

F, = buoyancy force due to entrapped air (for each tire not foamed)
Fg = buoyancy force due to submersed foam (for each tire that is foamed)
n = number of tires per module
m = number of tires foamed (per module)
This leads to

nFsed + nwtw + Fe = Fp + (n - m) Fa + me

(2)
1 m
Foed = (Fo = W) +(— ) (Fy - Fo) +(—) (Fg - Fp)
Using the following approximate values and estimates for the PT-1 module:
Fe = 220 kilograms
Fp = (60 kilograms per meter) (12 meters) = 720 kilograms
Wew ™ 7 kilograms
Fo, = 17 kilograms (50 percent of value from buoyancy test)
F¢ = 34 kilograms (crown fully foamed, 34 liters)
n = 176 tires
to obtain
F (a7 -7 +( : )(720 280) + ')(31. 17)
sed 176 n
(3)

m
Foed = 1° - 17 (-I-‘-)(kilograns per tire)
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The following examples demonstrate the increased load-carrying capacity
vwhen foam 18 added to the tires:

(a) Example 1. If none of the tires are foamed, m = 0 and m/n =
0 in equation (3) so that Fg.4 = 13 kilograms per tire. Therefore, a
weight increase of approximately 13 kilograms per tire can be accom-
modated before the breakwater starts to submerge.

(b) Example 2. If all the tires are foamed, m = n and m/n = 1
above so that Fgea = 30 kilograms per tire. In this case, each tire
can carry appioximately 30 kilograms of additional load for a total
reserve buoyancy of about 5300 kilograms per single-pipe module.

4, Cost Estimates.

Major construction components for the PT-1 module and their respective
costs as of mid-1980 are listed in Table 1. It should be noted that the steel
pipe accounts for nearly 60 percent of the total cost. Therefore, substantial
savings are possible if used pipe can be purchased, which was done for the
floating breakwater at the Mamaroneck site where used dredge pipe was obtained
at a fraction of the cost indicated in Table 1. As a precautionary measure,
steel pipe should be filled with foam before the end caps are welded into
place. The total component cost amounts to $19.60 per square meter of
breakwater.

Table 1. Cost estimates of PT-Breakwater components.

Module dimensions: 3.7 by 12.2 m (B = 12.2 m)

Materials: Truck tires (9.00-18 and 10.00-20)
Steel pipe (4l1-cm~diameter steel-pile pipe)
Conveyor-belt material (three-ply, 14 by 1.3 cm)
Nylon bolts, washers, and nuts (13 mm)

Item Quantity Unit cost Total cost Cost/m?
Steel pipe 12.2 m $43.00 $524.60 $11.60
Polyurethane foam 2.4 m3 75.00 180.00 4.00
(pipe plus 20 percent of tires)
Tying material 94 m 1.15 108.10 2.40
(conveyor belt)
Tires 176 0.25 44.00 1.00
(transportation cost)
Nylon bolts, washers, and nuts 80 0.35 28.00 0.60
Cost of breakwater $19.60
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Assembly and 1launching procedures should be carefully considered and
planned in advance so as to take full advantage of cost-saving site condi-
tions. Since the anchoring system can be very costly, alternatives should be
carefully investigated (e.g., the use of anchor piles may be less costly than
concrete clump anchors or steel embedment anchors, depending on availability
of pile-driving equipment and geotechnical conditions).

III. EXPERIMENTAL SETUP AND PROCEDURES

l. Test Facility and Instrumentation.

a. Wave Tank. Experiments were conducted in CERC's large wave tank which
is 194 meters long, 4.6 meters wide, and 6.1 meters deep. The tank was oper-
ated at two water depths, 2.0 and 4.7 meters, using regular waves ranging in
period from 2.6 to 8.1 seconds and height from 0.15 to 1.78 meters. A sche-
matic of the wave tank operating with a piston-type wave generator at one end
and a relatively ineffective rock revetment wave energy dissipator at the
other end is shown in Figure 18. The breakwater at high and low water is
shown in Figures 19 to 23.

b. Wave Gage. Two Marsh McBirney voltage-gradient water level gages
(Model 100) were used to measure incident and transmitted waves. The waves
were calibrated twice daily over a range of 2.0 metecs by manually lowering
and raising the wave staff. The output was recorded on a six-channel Brush
oscillographic recorder.

c. Force Gage. Lloads on the seaward mooring line were measured by a
single force gage located above the tank near the wave generator. The force
gage consisted of a cantilevered steel plate with strain gages mounted near
its base, as shown in Figure 24, The strain gages formed two arms of a full
Wheatstone bridge that was driven at carrier frequencies. The sensitivity of
the force gage could be varied over a broad range, not only electronically but
also mechanically, by varying the mooring-cable attachment point on the can-
tilever (Fig. 24). The force gage was generally calibrated before and after
each test (one wave generator stroke setting) by applying a series of loads
to the cantilever using a mechanical load tightener (come-along) and a 2270-
kilogram dial force gage. The electrical output was displayed on the six-
channel Brush oscillographic recorder; typical calibration curves are shown in
Figure 25.
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Figure 18. Large wave tank at CERC with breakwater and MS-1 mooring system.
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Figure 23. Attachment of seaward mooring line (MS-1 mooring system).

= =

" ]
2 K

1
D
/

1/4" MOORING
CABLE 61/2"

"x 12" x 24" STEEL PLATE

3/4" BOLT SHACKLE

STRAIN GAGES

L— 3/8" STUDS (4) 1

Ik

dwevo
STRAIN-GAGE - CANTILEVER STEEL BEAM ACROSS
UNIT WAVE TANK

—— CANTILEVER FORCE GAGE —
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Figure 25. Force gage calibration record and curve.
2. Mooring System.

The basic mooring-line arrangement used throughout the test prograa is
shown in Figure 18. The mooring lines were 6-millimeter-diameter wire rope,
except for two removable segments 6 meters long that are laheled time mooring
damper as shown in Figure 18 and in more detail in Figure 9. These sections
were installed in order to determine whether a pliant mooring-line insert such
as the six-tire mooring damper could significantly reduce pesak mooring forces.
Should a relatively “soft” mooring system be desirable, it may be achieved by
installing a tire mooring damper. The shoreward wmooring bridle was always
attached directly to the steel pipes; no mooring-line inserts were used on
this side of the breakwater. On the seaward side the mooring bridle was
most often attached to the steel pipe with cables connected to shackles
extending through the pipe wall. An exception to this {s the third mooring
system tested in which the mooring bridle was attached to the breakwater via
conveyor—-belt loops that were laced through two tires armoring the pipe. In
this case the mooring-line forces are first transamitted to those two tires,
then transmitted to the pipe itself after the tires have shifted some distance
along the pipe and encountered the compressive resistance of the other tires
restrained by the retainer at the end of the pipe (Fig. 7).

The following mooring configurations were tested (major features are
listed in Table 2):

(1) Damper Pipe Connection (MS-1). In this module the tire
mooring-force dampers are installed and the wmooring bridle is con-
nected directly to the pipes (soft line, hard connection) (see Figs.
18, 23, and 26).
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Table 2. Compliance of mooring systeas.

Mooring system
MS-1 MS-2 MS-3

“
Type of wooring-line insert! Tire Belting Belting

(soft) (hard) (hard)
Type of breakwater connection Pipe Pipe |Tires on pipe

(hard) (hard) (soft)
Mooring line stiffness (ranked) 3 1 2

lIngerts are 6 meters long; belting is in the form of a loop
(used double strength) with elongation characteristics under
load approximately equal to that of wire rope used.

Figure 26. Mooring bridle used in field installation.

(2) No-Damper Pipe Connection (MS-2). In this module the mooring
bridle remained attached to the pipes but the mooring-force damper was
removed and replaced with a conveyor-belt loop of equal length. The
load elongation characteristics of the conveyor-belt loop are similar
to those of the wire rope used (hard line, hard connection) (Fig. 27).

(3) No-Damper Tire Connection (MS-3). In this module the conveyor-
belt loop remained in place, but connection to the breakwater was made
by guiding the belt around two tires located on each pipe. In the
PT-1 module, tires numbered 9 and 10 were used for this purpose; in
the PT-2 module, tires numbered 15 and 16 were used (hard line, soft
connection).
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Figure 27. Load elongation curves for mooring-line inserts.

A stress~strain diagram for the conveyor belt with a five-hole bolted connec-
tion is shown in Figure 28. The strain values are influenced by the connec-
tion itself (i.e., elongation of the boltholes is being measured along with
any stretching of the belt). The belt failed at a load of 2270 kilograms, not
at the five-hole bolted connection but at the transition, where the belt had
to be reduced in width from 14.3 to 8.9 centimeters in order to fit into the
testing machine,

Force displacement relationships for MS—-1 and MS-2 were obtained by ten-
sioning the 1insert, using a large dump truck, and determining deflection and
force, using a measuring tape and a dial force gage. The results are plotted
in Figure 27. Corresponding relationships for MS-3 were not determined, but
observations indicate that the elastic properties of MS-3 are between those of
MS-2 and MS-1.

A mooring bridle utilizing both truck and automobile tires is shown in

Figure 26. This unit was not tested at CERC; however, it has been used in
field installations.

3. Test Procedure and Conditions.

This experimental program is limited to two designs, the PT-1 and PT-2
modules, and two water depths, 2.0 and 4.7 meters. The summary of the test
conditions shown in Table 3 lists one other breakwater design—-the PT-DB mod-
ule; this design is simply a PT-1 breakwater that has been lengthened in the
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>, . =1
! Table 3, Summary of test conditions. +4
N Breakwater No. of WUater DMooring Generator Wave height Uave period -:
Type Beam runs depth system  stroke s
N ()’ (m) (cm) (cm) (s) x
* PT-1  12.2 101 2.0 MS5-1 61 to 213 15 to 113 2.6 to 8.1 N
s PT-1 12,2 92 4.7 MS-1 61 to 168 42 to 178 2.6 to 8.0 Hx
. PT-l 12,2 62 4.7 M5-2 61 to 152 32 to 132 2.6 to 8.l ™
4 .
3 PT-1 12.2 %7 4.7 MS=3 61 to 122 30 to 130 2.6 to 8.1 :
- PT=2 12.2 &0 2,0 MS-3 61 to 122 18 to 110 2.6 to 8.l
¢ PT-2  12.2 36 4.7 M5-3 61 to 122 30 to 150 2.6 to 8.1 R
- PT-DB 25.9 34 2,0 M8-3 6l to 122 28 to 132 2.6 to 8.1
ol "

shoreward direction by flexibly attaching the PT-2 module by use of conveyor-
belt loops. Data for the PT-DB configuration are 1listed in Appendix A.
The PT-1 module was tested with three different mooring systems and was, in

1 4
i

TPy
-’ v e

9 general, emphasized in the experimental program. Out of 402 runs tested, 290 -
were devoted to the PT-1 breakwater, Wave heights ranged from 0.15 to 1.78 1
. meters, with wave periods ranging from 2.6 to 8.1 seconds; the wave generator
- stroke varied from 0.61 to 2.13 meters.
“ With the breakwater floating in the wave tank and attached to the mooring

system, test preparations were generally initiated each day by adjusting the
water level, calibrating the wave and force gages, and checking the stroke

-~
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setting of the wave generator. The generator was adjusted to the desired
frequency, started, and waves generated for about 5 minutes; this constituted
a run. After shutdown of the wave generator, a necessary waiting period
followed in order to regain quiescent conditions in the wave tank. When these
conditions were attained, waves of another frequency were generated and this
process was repeated until all the desired wave periods for that stroke
setting were obtained; this process constituted a test. One, and sometimes
two, tests were completed per day, and the generator stroke was changed in the
afternoon so that a new test could be started the following morning. Wave and
force gages were calibrated both at the beginning and end of each day's
testing (and sometimes more frequently).

IV. DATA REDUCTION AND ANALYSIS

1. Dimensional Analysis.

For a particular breakwater and mooring system, the transmitted wave
height, H,, wmay be expressed as a function of the following variables:

“t = f(H,L, B,D,G,A,m, k,e, d,Y,v,g)
where

€ = horizontal excursion of the breakwater from its equilibrium position

k = measure of mooring-system stiffness (equivalent spring constant per
unit length, 1)

m = mass of breakwater (per unit length, 1)
Y = specific weight of water
v = kinematic viscosity of water

gravitational acceleration

The remaining terms are defined in the definition sketch (Fig. 5). Since
this expression contains three dimensionally independent physical variables
(length, mass, time), this relationship involving 14 physical variables may be
replaced, according to Buckingham's w~Theorem, by one involving 11 dimension-
less groups:

-:-t- = wave transmission ratio, C,
B G X ke

P°'D’'D’'mg = gtructure parameters

H

i = wave Steepness
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% s YED = fluid structure parameters
ng
(%)(—vﬂ) = Reynold's nuaber

Delete the following parameters for the stated reasons:

% Only quasi-two-dimensional experiments will be
congidered (i.e., diffraction effects are
absent when the breakwater extends across the
full width of the tank),

ke This 18 the ratio of wmooring~system static

=g restoring force to structure weight and is not
changed during the experiment.

% Assumed to be s weak parasmeter that is of
little importance for small values of ¢/H
(i.e., for horizontal motions of the structure
that are small compared to the wave height).

YyBD

o This parameter relates the mass of fluid dis-

placed by the breakwater to the mass of the
breakwater itself., It would remain constant
for geometrically similar breakwaters con-
structed from the same materials.

(%)(L\':Ei-) This Reynold's number is based on the tire
dismeter and a velocity that is related to the
maximum wave-induced water particle velocity;
it will be assumed large enough to insure
Reynold's number independence.
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By eliminating the above dimensionless groups, the following is obtained
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This is the relationship on which the experimental program was based.

Similarly, consider the mooring-force relationship to be
F= f(ﬂ,ﬂt,L, B,D,G,A,m, k,ec, d,Y,v,g)

and, by similar reasoning, obtain
F f(L H D B) (5
yllz B'L d’ D

2. Data-Reduction Procedures.

Analog signals from the wave gages and force transducer were recorded on
three channels of a six-channel Brush oscillographic recorder, Typical
records of the seaward mooring-line force and the incident and transmitted
waves are reproduced in Figures 29 to 32,

Wave reflections from the steep, rock-armored beach at the end of the wave
tank (Fig. 18) were an annoyance, particularly for the longer waves generated.
The incident and transmitted wave heights were therefore generally obtained
from the first 5 to 10 waves in the run (i.e., before wave reflections could
substantially influence wave height wmeasurements. Beach reflections were
particularly bothersome when generating waves of low steepness and of periods
larger than about 5 seconds.

From the force gage records it can be seen that the seaward mooring load
fluctuates with the passage of each wave between a maximum value, which varies

i lzlsJo IJRH' T ESk LI T111] lpur_ A HAH HEH _MQ.M
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Figure 29. Wave and force record for long waves (d = 4.7 m, T = 8.0 8).
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Figure 30. Wave and force record for short waves (d = 4.7 m, T = 3.2 8).
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Figure 32. Wave and force record for shallow-water waves (d = 2.0 m,
T= 5.5 s)o

throughout the run, and a minimum value, which remains essentially constant.
The individual force peaks occur as the breakwater surges shoreward during
the passage of each wave crest, but is prevented from moving too far in this
direction by the mooring-line restraint. On the other hand, the seaward
movement of the breakwater is not similarly opposed, since no force cantilever
was installed on the leeward side of the breakwater. Instead, only a constant
negative restoring force or preload of approximately 113 kilograms was exerted
on the breakwater via the shoreward mooring line and pulley-weight arrangement
shown in Figure 18. The zero—-force referen¢e position recorded at the begin-
ning of each run always corresponds to this static preloaded condition of the
cantilever force gage. Negative force values up to the magnitude of this
preload can consequently be obtained as the breakwater surges seaward; these
constitute the stable lower limit of the force records.

A time-series analysis of the force data was not performed because the
experiments were limited to regular waves and because the level of effort
required did not make it feasible. For practical purposes, each force record
is therefore characterized by a single force value that 1is considered most
useful for design purposes——the peak force, F, occurring during the length
of record (excluding wave generator start-and-stop transients, which have no
counterpart in nature). Typically, this implies that the first 5 to 10 waves
were not included in the analysis, nor were those last waves propagating down
the tank after shutdowm of the wave generator. Each run consists of at least
50 waves. In addition to the peak mooring force, F, an approximation to the
drift force, F, 1s also obtained, as 1is the significant peak force, Fg.
The drift force F 18 the net, time-averaged force acting on the seaward
mooring line; it was determined "by eye” as shown in Figure 33 and is there-
fore subject to larger errors. The significant force, Fg, represents the
average of the largest one-~third of the force peaks, again excluding stop-and-
start transients; it is obtained manually, directly from the data trace.

If stop-and-start transients are included in the determination of the peak

mooring force, as has been done by other investigators (Giles and Sorensen,

36

Zomd 2 fan TN on &N o m oA aalaaa

ng— . L PIA i B S At e e et et ey

e

TR SN VR

el N e aaak Th

FEPR WL

IS SV

— bt A,

k.

. .“_.l datd A g

N




foy
w
O
c
o
(18
| heaoN 1
™~ T L
START BEST DATA REFLECTIONS  STOP
___’,//( TRANSIENT TRAN.

TIME
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F‘ = AVERAGE OF HIGHEST 1/3 PEAKS
%, = AVERAGE OF LOWEST 1/3 EXTREMES

'2 = HIGHEST PEAK FORCE VALUE FOR LENGTH OF RECORD

Figure 33. Definition sketch for force analysis.

1978), the difference between F and this peak force is frequently small, but
on the other hand can be quite large as shown in Appendix B. 1In that appendix
the peak mooring force, F, is also compared to the significant peak force,
Fg, for a large number of the tests.

The cantilever force gage is calibrated at least once at the beginning and
ending of each day's testing; if zero drifts are observed, it is calibrated
more frequently. Calibration 1is accomplished manually via a separate cable
with mechanical load tightener and 2270-kilogram dial force gage in series,
attached close to the cantilever. A typical calibration record is shown in
Figure 25. The force values are always referenced to the static no-load
condition (i.e., with pully preload but no waves).

V. EXPERIMENTAL RESULTS

l. Wave Transmission Data.

For each breakwater configuration and water depth, the transmitted wave
height depends primarily on the width of the structure and the incident wave-
length (or period) and wave height. Dimensional analysis and physical insight
were invoked in Section IV to arrive at dimensionless parameters that would
describe the problem more succinctly and clearly and would also guide the
experimental effort and analysis of the results. This evolved in the presen-
tation of the data in the format shown in Figure 34. The wave height trans-
mission ratio, C, = Ht/l-l, is presented as a function of relative wavelength
L/B, with different symbols designating ranges of wave steepness H/L. These
are the primary parameters. The secondary parameters are listed in the insert
of each figure., These parameters specify the water depth (relative depth,
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Figure 34, Wave transmission data for PT-1 breakwater (d = 4.7 m).

D/d) and breakwater geometry (aspect ratio, B/D, and pipe spacing, G/D).
For design purposes, the transmission characteristics of each breakwater are
summarized in the form of a single wave height transmission curve. This curve
corresponds to a wave steepness of H/L = 0.04 (a moderate value frequently
encountered in practice) and different values of D/d. Although much data
have been obtained at wave steepness other than 0.04, indicating that the
transmission ratio, C;., generally decreases with increasing wave steepness,
the available data are not adequate for defining transmission curves for wave
steepness other than 0.04. Nevertheless, the influence of wave steepness has
been preserved to a large extent by grouping the data according to steepness
categories; in Appendix C the value of H/L 1is actually listed next to each
data point. Appendix C should be particularly useful for design cases with
wave steepness near the extremes encountered in nature, either high or low
(e.g., H/L 1larger than 0.08 or less than 0.02), since deviations from the &4-
percent design curve may then become significant. The wave transmission data
in Appendix C have also been segregated with respect to the type of mooring
system installed, but it was found that this had no discernible influence on
wave transmission characteristics. It is therefore permissible to combine the
data for all of the mooring systems as has been done in Figure 34.

a. PT-1 Breakwater. Wave transmission data for the PT-1 module (truck
tires, steel pipe) are shown in Figures 34 and 35 for two water depths, D/d =
0.22 and 0.51. 1In both cases the transmission ratio, C;, increases mono-
tonically with relative wavelength L/B. The breakwater is very effective
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Figure 35. Wave transmission data for PT-1 breakwater (d = 2.0 m).

in filtering out waves that are shorter than the width of the structure, but
becomes increasingly less effective as the wavelength increases. It is evi-
dent that the breakwater is significantly more effective at the lower depth,
particularly for longer waves. The influence of water depth, or relative
draft D/d, becomes particularly apparent in Figure 36 where the transmission
curves are compared.
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Figure 36. Wave transmission design curves for PT-1 breakwater.
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The influence of wave steepness is most readily detectable for longer
waves (e.g., L/B larger than 2) and may be important at low water depths.
For L/B = 2,9 and D/d = 0.51 (Fig. 35), the value of C, decreases dramati-
cally from 0.9 to 0.4 as H/L increases from 0.007 to 0.028 (refer also to
Fig. C-7 in App. C). The data in Figures 34 and 36 apply to the PT-1 module,
which has a pipe spacing of G/D = 3.3, aspect ratio of B/D = 12, and beam
B = 12,2 meters. These conditions may not be altered greatly without also
influencing the wave transmission characteristics. For example, the design
curves of Figure 36 may not apply to a structure with a much larger beam,
e.g., B = 24 meters (i.e., or B/D = 24). Until further data on the importance
of B/D are obtained, it is suggested that the PT-]1 wave transmission design
curves of Figure 36 be limited to beam dimensions in the range from 9 to 15
meters, Such information has been recently provided in Harms, Bishop, and
Westerink, 1981. Existing data from small-scale experiments (Harms, 1979)
indicate that the transmission curve for D/d = 0.22 does not change signifi-
cantly as the water depth increases. For deepwater applications with D/d
less than 0.2, it is therefore suggested that the D/d = 0.22 curve be used for
design purposes, at least until further data become available. In addition,
curves should not be extrapolated beyond the range of data shown (i.e.,

L/B > 4.5 and 3.0).

b. PT-2 Breakwater. Wave transmission data for the PT-2 module (con-
structed of automobile tires and telephone poles) are shown in Figures 37 and
38, with design curves given in Figure 39. The behavior of the PT-2 module is
very similar to that of the PT-]1 module, although a decrease in wave attenua-
tion performance is indicated, at least at the larger water depths considered
in Figure 40. It was observed that the influence of wave steepness H/L is
again particularly apparent at the lower water depth (D/d = 0.33, Fig. 38) and
large values of L/B. The actual H/L values associated with each data point
are given in the appendixes. Again, curves should not be extrapolated beyond
the range of the data shown (i.e., L/B > 4.5 and 3.0).
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Figure 37. Wave transmission data for PT-2 breakwater
(d = 4,7 lll).
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Figure 39, Wave transmission design curves for PT-2 breakwater.

41

N W G P Y

o AL ~':-.‘~'.‘.-‘.~,-_‘ }u‘ P

" K] .
S Y

Ir‘.“-"<". ';"".-
kel b el




1.20p— T T T T - r T LA ”*T
H/L = 004
S oo
- PT-2 ot D/d=014
°
)
@ (0,80 PT-1 at D/d:=022
[ =4
Qo
»
@
E 0.60
«w
c
o
—
€ 040
o
@
I
S
3 0.20
=
o | S . | S U S L ' i —J
0] 0.50 1 00 150 2 00 2.50 3.00 350 4 00 4.50

Relative Wavelength {L/B)

Figure 40. Comparison of PT-1 and PT-2 wave
attenuation (d = 4.7 m).

c. Goodyear Breakwater. Giles and Sorensen (1978) obtained prototype~
scale wave transmission data for the Goodyear floating tire breakwater using
the large wave tank at CERC. Data for the 6-module-wide Goodyear breakwater
are plotted in Figures 41 and ‘42, along with the wave transmission curve for
the PT-2 module. Both breakwaters are constructed from automobile tires and
have a beam of !2.2 meters which is equivalent to B/D = 18.5. For the lower
water depth case considered in Figure 42, it is evident that the PT-2 break-
water 1is substantially more effective than a Goodyear breakwater of equal
size. At the larger water depth considered in Figure 41, the PT-2 breakwater
is still superior but not as much so as at the lower water depth.

From extensive small-scale experiments by Harms (1979a, 1979b), the
influence of water depth is found not to be of practical importance for the
Goodyear breakwater, at least for values of D/d 1less than 0.4, although
C, clearly decreases as D/d 1increases, How significant the influence of
D/d 1is for the full-scale Goodyear breakwater (Figs. 41 and 42) is shown in
Figure 43 where the data for D/d = 0.16 and 0.33 may be compared while keep-
ing L/B, H/L, and B/d constant; the difference in C, is typically less
than 0.1 (the C, values near L/B = 2 are probably false). Small-scale and
prototype-scale data are therefore in agreement and the single Goodyear wave
transmission curve of Figure 44 (Harms, 1979a) may be used for most practical
applications as long as D/d does not exceed 0.4; near D/d = 0.4 the design
curve will be somewhat more conservative than at lower values of D/d.

The performance of the PT-1 module is compared to that of a Goodyear
breakwater of equal size in Figure 44. It is apparent that the PT-Breakwater
provides substantially more wave protection than the Goodyear breakwater. It
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should be noted that the Goodyear design curve in Figure 44 is independent of
B/D, having been tested over a broad range of B/D during experiments at
the Canada Centre for Inland Waters (CCIW) (Harms, 1979a, 1979b). A similar
series of experiments for the PT-Breakwater was scheduled at CCIW in September
1980 (see Harms, Bishop, and Westerink, 1981 for results).

2. Moorig-Force Data.

a. PT-1 Breakwater., This breakwater was tested most extensively in
the MS-1 mooring configuration (i.e., with a six-tire mooring-force damper
installed). It was also tested with the M$-2 and MS-3 mooring systems at the
deepest water depth of 4.7 meters. As is explained in Section II1I, the MS-2
mooring configuration is the "stiffest” system tested and the MS-1 is the most
elastic or "softest” system tested with the elastic properties of the MS-3
system lying somewhere between them.

The peak mooring force is plotted in Figures 45 and 46 as a function of
wave height for the case of MS-1 and two water levels, D/d = 0.51 and 0.22.
An exponential relationship between the mooring force and the wave height can
be detected in the data, even though this information is masked at times by
the relatively large scatter of data (even at fixed L/B) that is common in
this type of measurement. The best “"by eye"” fit has been drawn and indicates
that at both water levels F 1is proportional to H3/2, For a given wave
height and wavelength, the peak mooring forces are clearly higher at the lower
water level. This 1is shown in Table 4 where the value of the force coeffi-
cient K 1is listed and defined. The influence of L/B is difficult to quan-
tify from the data: an increase of F with L/B appears to be indicated,
particularly at D/d = 0.51, but additional tests would have to be made to
define this relationship.
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Figure 45. PT-1 peak mooring-force data (MS-1, d = 2.0 m).
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Figure 46. PT~1 peak mooring-force data (MS-1, d = 4.7 m).

Table 4. Summary of mooring-force data.!

Mooring Force coefficient, K
system PT-1 ' PT-2 Goodyear
: K d K ) F K
Y/Hab YHZ YHZ
D/d D/d D/d
0.22 | 0.51 0.14 0.33 0.16 |0.33
2 2 3
MS-1 0.28 | 0.46 0.20 0.33 —— | ——-
HS—Z 0 050
MsS-3 0.37 | -—- 0.27 0.44 ———— | ———
Goodyear 0.14 |[0.11

lFor design purposes, suggest that F be increased
by 100 kilograms per meter.

2gstimated values.
3pata not available.
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How the mooring-system elasticity affects the peak mooring force is shown
in Figures 46, 47, and 48. In each case the water level is fixed and only the
mooring-line flexibility is changed. A substantial increase in F 1is noted
when the six-tire mooring-force damper 1is removed and replaced with a rela-
tively inflexible section of conveyor belt (i.e., switching from the MS-1 to
the MS-2 system). This i8 apparent in Figure 47 where the MS-2 data are shown
with relation to the MS-1 curve from Figure 46; all the data are above the
MS-1 curve with much of the data far above it. The MS-3 data and curve-
through data are shown in Figure 48. This system results in forces that are
somewhat higher than those for the MS-1 system but lower than those for the
MS-2 system. The corresponding values of K are provided in Table 4.

b. PT-2 Breakwater. The PT-2 module was tested only in the MS-3 mooring
configuration; test results are shown in Figures 49 and 50. Again as for PT-
1, the force is proportional to H"™, but for PT-2 the appropriate exponent is
2, not 3/2 as it is for PT-1. The curves for n = 2, fitted by eye, are shown
in Figures 49 and 50; the corresponding values of K are listed in Table 4.
Although PT-2 was tested with the MS-3, and not the preferred MS-1 mooring
system, the effect of a change from MS-3 to MS-1 may be estimated by assuming
that the ratio of the respective forces is the same as for the PT-1 module
(for which such data exist and are conveniently summarized in Table 4). For
PT-1 it is noted

K(MS-1) _ 280 _
K(MS-3) ~ 370

Assuming that this ratio holds for the PT-2 module as well, the estimated MS-1
values, shown in Table 4, are obtained. Although the peak mooring forces for
the PT-1 module are higher than those for the PT-2 module for the same wave
height and water depth, it should be noted that the transmitted wave is also
smaller in the case of the PT-1 module.

0.76
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Figure 47. Effect of mooring-system compliance on F

(MS~1 and MS-2, d = 4.7 m).
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Figure 49, PT-2 peak mooring-force data (MS-3,
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d=2.0m.

c. Goodyear Breakwater. The Goodyear module tests by Giles and Soremsen
(1978) also included an evaluation of the breakwater mooring loads. Data from
those experiments are plotted in Figures 51 and 52 for the case corresponding
most nearly to the conditions in the present study (i.e., for the six-module-
beam Goodyear breakwater that 1is also 12.2 meters wide). The curves shown in
Figures 51 and 52 indicate that F 1is proportional to HZ; the correspond-
ing force coefficient K 1s listed in Table 4. The hyperbolic relationship
between F and H adequately describes the data.
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Figure 51, Goodyear peak mooring-force data
(Giles and Sorensen, 1978; d = 2.0 m).
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Figure 52. Goodyear peak mooring-force data
(Giles and Sorensen, 1978; d = 4.0 m).

For a given wave height and length, the mooring forces on the Goodyear
breakwater are clearly much lower than those for a PT-Breakwater of equal
v size. This finding 1s attributed principally to three factors, the relative
p importance of which cannot be quantified at this time: R

NNSTNPU 5 UM

(1) The transmitted ‘wave for the PT-Breakwater is smaller than
that for the Goodyear breakwater; i.e., different levels of energy
- dissipation occur on each structure (wave breaking and impact, etc.). -]

(2) Different mooring systems were utilized. The importance of 4
this has already been demonstrated with regard to the PT-1 breakwater
(see Table 4).

(3) The Goodyear breakwater design stretches extensively under
load, being very pliable throughout. This influences or perhaps even
dominates the mooring dynamics and load transmission characteristics.

SN PTRICRATIY by

VI. SUMMARY AND CONCLUSIONS

Two prototype-scale PT-Breakwaters were tested in CERC's large wave tank
using regular waves: the PT-1 module, constructed of truck tires and steel
pipes in waves up to 1.8 meters high, and the smaller PT-2 module, constructed
from automobile tires and telephone poles in waves up to 1.5 meters high.
Wave transmission and mooring-load characteristics were established based on
data from 402 separaste runs in which incident and transmitted wave heights e
were recorded, along with tension in the seaward mooring line.
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In the course of the investigation, it became increasingly evident (during
construction, crane operations, and early experiments) that the PT-1 break-
water was more rugged and could potentially function and survive under more
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severe wave conditions than those normally considered acceptable for floating
tire breakwaters. For this reason, the PT-] module was emphasized in the test
program. Although structural failures were not experienced on either the PT-1
or the PT-2 breakwaters throughout the many weeks of testing, and posttest
inspections did not reveal areas of imminent failure or excessive wear, it
became clear that the PT-2 module was inherently more pliable than the PT-1
module because it was composed of automobile tires, not truck tires. Conse-
quently, as waves broke over the structure, greater compression and displace-
ment of leading-edge tires occurred on the PT-2 module than was true for the
PT-1 module under the same conditions. Although PT-Breakwaters were designed
to be pliable, with relative motion between 1individual components, under
severe wave-induced loads, the observed compression of leading-edge tires
on the PT-2 module is felt to be excessive for continuous operation. It is
therefore suggested that the PT-2 breakwater be limited to sites with signifi-
cant wave heights of less than 0.9 meter; this condition is considered to be
equally appropriate for Goodyear or Wave-Maze floating tire breakwaters that
are composed of automobile tires as well. The value of 0.9 meter was chosen
by the researchers as representing the best, though inherently somewhat sub-
jective, estimate for the maximum acceptable significant wave height; it is
based on extensive laboratory observations and experience with a variety
of field installations. The above rule 1is considered to be of practical
importance because it reminds the designer that the environment is hostile
and that PT-Breakwaters constructed from automobile tires ere inherently less
rugged than those composed of truck tires; both have survival 1limitations.

The wave attenuation performance of PT-Breakwaters improves as either
wavelength or water depth decreases, or the wave steepness increases (i.e.,
C, increases with L/B and decreases with D/d or H/L). The shelter
agforded by a particular PT-Breakwater is strongly dependent on the incident
wavelength: substantial protection is provided from waves that are shorter
than the width of the breakwater (i.e, L < B), but very little from waves
longer than three B, As the water depth decreases, the wave attenuation
performance improves; a breakwater that provides inadequate shelter at high
tide may therefore be satisfactory at low tide. Wave attenuation generally
improves with increasing wave steepness, especially for relatively long waves
in shallow water (e.g., L > 3B and d < 3D). This behavior 1is attributed
priziipally to the inherent instability of waves, which increases with wave
steey~ess and, for waves near the breaking limit, is so great that only a
small perturbation is required to “trigger” the breaking process. For steep
waves, breaking was observed to start just seaward of tne breakwater with
large amounts of energy being dissipated as the wave rolled and surged over
the breakwater. The wave attenuation performance of the PT-1 module was found
to be superior to that of the PT-2 module and the Goodyear breakwater. For
L/B = 1 (and deep water with d > 3D and H/L = 0.04), for example, the wave
height transmission ratio was approximately C. = 0.6, 0.4 and 0.2 for the
Goodyear, PT-2, and PT-]1 breakwaters, respectively. Wave transmisuion curves
given in this report should not be used to design breakwaters that are less
than 9 meters wide or more than 15 meters wide (see Harms, Bishop, and
Westerink, 1981 for further data).

For a given breakwater, the peak mooring force, F (on the seaward moor-
ing 1line, per unit length of breakwater) was found to depend primarily on the
wave height, H, and water depth, d, with wavelength, L, apparently only
of secondary importance. For the conditions investigated, F increases
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approximately with the square of the wave height; more specifically, F « H
where n = 1.5, 2 and 2 for the PT-1, PT-2, and Goodyear breakwaters, respec-
tively., For design purposes, and until the results from ongoing experiments
become available, it is suggested that the following formula be used to cal-
culate anchor requirements for breakwaters that range in width from 9 to 15
meters:

F = 100(1 + 10 KH") 6)
where
H = wave height (meters)

F = restraining force (kilograms per meter) to be provided by the
anchor system for each meter of breakwater length

n = 3/2 for the PT-1 breakwater or 2 for the PT-2 and Goodyear
breakwaters

K = force coefficient from Table 4.

The available small-scale and prototype-scale data have recently been
synthesized into detailed design curves (Harms, Bishop, and Westerink,
1981). In order to be conservative, mooring loads should be determined from
these design curves as well as equation (6), and the larger value chosen for
design purposes.

52

TR Ty T T TR T T e T g T W T W - s m R T TR e T s

PRSP WAL B L

R S
(W W ]

Bl o d S Al

.

2K VARSI
v




& T Y T e T TN T T T, Ty e v

L A N N e s

LITERATURE CITED

CANDLE, R.D., "Scrap Tire Shore Protection Structures,” Engineering Research
Department, Goodyear Tire and Rubber Company, Akron, Ohio, 1976.

DAVIS, A.P., Jr., "Evaluation of Tying Materials for Floating Tire Break-
waters,” Marine Technical Report No. 54, University of Rhode Island,
Kingston, R.I., Apr. 1977.

GILES, M.L., and SORENSEN, R.M., “"Prototype Scale Mooring load and Transmis-~
sion Tests for a Floating Tire Breakwater,” TP 78-3, U.S. Army, Corps of
Engineers, Coastal Engineering Research Center, Fort Belvoir, Va., Apr.
1978.

HARMS, V.W., “Design Criteria for Floating Tire Breakwaters,” Journal of the
Waterway, Port, Coastal and Ocean Divistion, Vol. 105, No. WW2, pp. 149-170,
Mar. 1979a.

HARMS, V.W., “Data and Procedures for the Design of Floating Tire Break-
waters,” Water Resources and Environmental Engineering Report No. 79-1,
Department of Civil Engineering, State University of New York, Buffalo,
N.Y., Mar. 1979b.

HARMS, V.W., and BENDER, T.J., "Preliminary Report on the Application of
Floating Tire Breakwater Design Data,” Water Resources and Environmental
Engineering Report No. 78-1, Department of Civil Engineering, State
University of New York, Buffalo, N.Y., Apr. 1978.

HARMS, V.W., BISHOP, C.T., and WESTERINK, J.J., “Floating Breakwater Design
Criteria from Model and Prototype-Scale Experiments,” Proceedings of the
Second Conference on Floating Breakwaters, 1981.

KAMEL, A.M,, and DAVIDSON, D.D., “Hydraulic Characteristics of Mobile Break-
waters Composed of Tires or Spheres,” Technical Report No. H-68-2, U.S. Army
Engineer Waterways Experiment Station, Vicksburg, Miss., 1968.

KOWALSKI, T., "Scrap Tire Floating Breakwaters,” Floating Breakwater Con-
ference Papers, Marine Technical Report Series No. 24, University of Rhode
Island, Kingston, R.I., Apr. 1974, pp. 233-246.

STITT, R.L., "Wave-Maze Floating Breakwater,” Brochure No. 10732, Temple City,
Calif., 1963 (revised 1977).

53

1
‘
Kl
3

) S

PP WEPCRIN

P orer, v,
PV OO WP Wi TV T, O PN

3
adh




T g———

P, RT, DEPTTeR————

APPENDIX A

w
3]
&)
=
v
3
[
[72]
E
a
8
3
3
B

PRl A
. "

QRALEAEE b ik i irirt ui LA S AR e

[ NP

. Tttt
ORI I Y}

« T .

B A ] -

P A I RV
SO P LA Sr srur

55

heaianca e b ad

T T, G S i Sl S

A




OQeartrdQO U D NHO 1O N OV DD NI O A OMIFIN QL N OOV @ NN UV MIC
O NN vd b =4t 74 st 4 v ot oS =t b O D ) NN P ) O N OO ot 7t DN et 4 ol ol 4 0t 4 et D DO O OOV ot et et 4
6 00 0 00 0 8. 8 00 0 0 0 0P 00T G0 0 0L O 0L OO NOB a0 B OEL OO0 0g e 0o

3

(vY(oT)(pT)

y Sy

S P C PUIF) M) = OONLOU T DNOUOMOIT U O M s MIFIN (Y6~ D W0

QT NOOWMBH T I~ DNUNINTINIIE € MAINANNT Mt 0L WL DO DU TS TSNNOQIWER WD

@ 60 8 0 0 8 0 0 0 ¢ 00 80 g 0 Q8NN O NN 8NP TGPPSO EE O
- (alalala el it 4~ vt 4t

H/DT
a4 oAb

GO0 NIFIG AN V- I NNV OOMDAM I DWW I ONG QG UI I G GON) & DUD W NNOM

B NN OVUVINDONYIEeODVRMN I VDGR M NG YO M INNO LOONUIT OOl O e

AN NN U W D UVDDOQOU A e NN MINN T O VDV QR UI O OIOMIMEIYI- N~ ok

@ 0 0 0 0 6 08 5000 %00 % 00 00 02t b 00 e NP SO g0 g PP G LI E S S te B0 g 0
it et ries

Y P

LAY

DI TR NN SN NDOOR N DDA R NIMNINONNT G XN e ™ VN~ VDON S
DVOHANNT IO OAT T IFOODDDDONANNII G VOO M0 - ON VNG LN QN0
@ 0 8 00 50 00 94 08 00 0 008 00 ¢ 000009 SO0 e s gL Eeeo

gt S OV I NN DY et ot rd ot e N U OO O OIS R 10 ) vt et e O OICV O O

L/B

'

FNW I RN AN BN D VW AN D GO A~ NI MO OUN TR OIS KNI ~INTT O

LRI AR BN N A N B B IR N B I B B AE R S SE SN IR S BN SN ALK B NI R B 2 I I TR RN O B B Y N B 1

QMWD DN T M I eI eleqed HAOC O ORI N T T IO r it e P O @ VNI NN o -
[alalalole]

H/L

VIO~ 0 NG ON T DU & & O it QOMYIOMNDVO-ONMN S ¢ NN g IO
(IR RE B B N B N Y Y N B B B I B B I R I B B B B B S B I I B RO B RN B SN I N S TS
T MO FNAONNONDT T N0 MM UIN D OT =32 4 MMM FMMNN GO NN MY
et e e I CHNOCI NN T it rt el A Sl et =S N AN CIF I R M) § G i i NN

(m)

o..oo..onoooooo..-..o.oo90.0‘060..0.000.‘000.0.00.0.0
D IOr- € 0 ¢ DM IFHG N NIMN on—ctaouhcomntnmvﬂ:ocmc\cmnonnmoehnoccﬁnu
VUV E G DNNG T VAN A€ NN A DGO NS D S ONIN & ¢ COMTO DN NND
vt rletvg vl et ot A el orf vt HOFOIOIIIN N NN 1D N O =4 N 4 ot 7 et - g A =D D) NN N o i - ot

(kg/m)

.-
At

09 0 00 00 0000 00800 0600000006000 060000s0e000gp®se0ssboeosvcoce
VNN ONO D F - OV MO O @ O~ th ¢ € ¢ 0D OV ¢ DR DO DO O O MNHINO NN
RN OP-T AP NI D it 4O =N 0 DD N S g I~ @ M0 DN © A O M NN M @ DO MY DNDT N D
OO OI O 7t = vt d el vt ot =t -1 4 -t =V N NN MY D7) 13 NN IO (N g Nt 7 -t v 04 -4 T NI I N (N et -4 ot ot

F
(kg/m)
L

00 0 0800000 P 00B 0P ONLEDBRNO NP0 000t a0 g eepe®oaBoeb ey
G 1130 M~ (I AD 4 74 +4 MV -t 4 =41} O D TN € © NN DN I § VO 10 = 1~ WIS D= 0O D DN D - (N0 S =W Y
i - O e cnmunwmwwn—eoanwn\onmehmmnonnmnnn-—meoot—c-«n R
e trded O St réodrd ¢ Nt

PT-1 breakwater with MS-1 (d = 4.7 m).
FO

¥
(kg/m)

W NN DN O € =D ND MNP O O =i ¢ €0 D NDN ¢ DD DM DTN QAN ~NO N
D et G B AL DO 4 E A DD DN D - ¢ N DN RO - HIN N ¢ NN O NN N
O O NN o4 1 4 04 74 A7 =l o -4 it o4 N NN D D D) DN NN i 718N g T -t 0 e ed TS P D D YN -t =t ot 04

d
6000000000005 0000800000006000000680006s%0009e000006000800090 'i

P
(kg/m)

® 0 0 00 0 00 0 00 0 0% 20 20 00 0 0000 P P9t g e® T E GO0 b g e ONen
LOALVEOONNNODYOVE ¢ ¥ ¢ VD¢ OQDVVINVONOE NOVBPYIVRXUOC 4 FOVD ¢ DNE 4 ON K
HAANNMES SNINNT 4 D ¢ FTNARAHAUNNNMNGE 3 D NHDINNINN S NN 9 ¢ ¢ ¢ T N0 DB D D

4.650 (m)
= 101.600 (cm)
12.200 (m)
3.350 (m)
0.218
12.008
3.297
v
(cm)

@ 90 ¢ & 00 g g0 0.0 8 090 80000

QOO TONOVI¢ TODesNINS VOO

N OWVBINN G ¢ @ NMDONDD DO
ot eavt -

B
(cm)
8
2
6
8
2
[ Y
8

:BLOG
:BLOG/DT =
1
1
1
1
1

:DT/D

:3/DT

>
.
.
:
'y
H
.
H

e €318 NNOHIEIN INO T OO ININNO OO M OO N DO NNVISO OO NN O M EIIFN UM CiIF) NN G M W) "

F.. W\DOD NN VID PO OO INDRHDYWDNNDD NN DO ¢ NV TN NODO N INDD ¢ N0 N o
@ PHC 0.0 0 00 0,00 4°0°5.00 8.0°0Q 0 0.9°0.0.P 020 00 920 p.p OO g p.00 00 .Q ®p-p 0

NNMF’W‘"’InQ T4 ONNINO O~ NNNNNINIINIMNMF NS ¢ T NNNOONNMMNNING ¢ ¢ TN

T
(s)

B ~ DMV NS (N AN O IO T WO 1) I 1A U LDV I MY W V6 0 46 500 M VW MDA 4 0 14 HDWN ¥ AN D
Qg 9000000 WD YD WDY I DD DD G DW0D DWW B0 D00 01000 0D VI W \D\0 0 8 D0 0 DD 0 \D

- @ S0 s e e o0 @8 6 00 98 80 8 0 g0 000 s 0000 N0 P00 00000 get0egqoe

g I ERZ SRR RL NSRS R AR R LSRR PRSI SIS S S X XX F'2 X 4

Breakwater beam
Log spacing
Bslative draft

Water depth
Tire diameter

® & 8 06 0 0 0 ¢ 500 0 P 0 g0 "0 0oL g 8
- - s =t o=t DD D ADVDAD D DD W0 A \D DD D 0 D VYD A O D DD 047l gt vt ot 0=t 74 gng =4 74
) L [ ST ST S SO [V ST S A YT N T XY X

56

l ‘A e a mmam . _a_.a

T a8 A e e 3l e > A Y >



\ g

ey
.

o B

B
.

.
»

-y Yy
“." Y
o ' e

Y
i

ey
v
.

v
D

PT-1 breakwater with MS-1 (d = 4.7 m).--Continued

Table A-1.
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(kg/m)

F

PT-1 breakwater with MS-2 (d = 4.7 m).
(kg /m)

F
(kg/m)

3.350 (m)
HT
(cm)

4.640 (m)
= 101.600 (cm)
0.219
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PT-2 breakwater with MS-3 (d = 2.0 m).
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PT-DB breakwater with MS-3 (d = 4.7 m).
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CERC.JUNE,.1979.PT-1 BREARKWATER.MOORING TYPE t, DEPTH = 4.6SM.
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o
3 CERC.,JULY,1979,.PT-1 BREAKWATER ,MOORING TYPE 2, DEPTH = 4.6M.
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Figure B-3. Correlation of F and F2 (MS-2, d = 4.7 m).
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APPENDIX C
DETAILED WAVE TRANSMISSION DIAGRAM
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